Dateneffizientes Reinforcement-Learning

نویسندگان

  • Volkmar Sterzing
  • Steffen Udluft
چکیده

Obwohl sich mittels Reinforcement-Learning optimal agierende Agenten für eine sehr allgemeine Problemklasse entwickeln lassen und bereits 1992 am Beispiel von Backgammon gezeigt wurde, dass auch komplexe Probleme gelöst werden können, ist die Liste der praktischen Anwendungen, in denen Reinforcement-Learning bisher eingesetzt wurde, noch immer recht kurz. Dies liegt unseres Erachtens nach daran, dass Dateneffizienz, d.h. die Fähigkeit anhand einer sehr begrenzten Zahl von Interaktionen zu lernen, in der Vergangenheit nicht genügend beachtet wurde. Im Folgenden wird dargestellt, dass hohe Dateneffizienz durch die Verwendung von gut generalisierenden Funktionsschätzern, die eine optimale Abbildung bezüglich aller Beobachtungsdaten anstreben, erreicht werden kann und sich somit Reinforcement-Learning auch für technische Probleme mit limitierter Möglichkeit zur Exploration einsetzen läßt. Dies wird anhand der Regelung einer Siemens-Gasturbine illustriert.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • KI

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009